git @ Cat's Eye Technologies linapple / master src / AY8910.cpp
master

Tree @master (Download .tar.gz)

AY8910.cpp @masterraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/***************************************************************************

  ay8910.c


  Emulation of the AY-3-8910 / YM2149 sound chip.

  Based on various code snippets by Ville Hallik, Michael Cuddy,
  Tatsuyuki Satoh, Fabrice Frances, Nicola Salmoria.

***************************************************************************/

//
// From mame.txt (http://www.mame.net/readme.html)
//
// VI. Reuse of Source Code
// --------------------------
//    This chapter might not apply to specific portions of MAME (e.g. CPU
//    emulators) which bear different copyright notices.
//    The source code cannot be used in a commercial product without the written
//    authorization of the authors. Use in non-commercial products is allowed, and
//    indeed encouraged.  If you use portions of the MAME source code in your
//    program, however, you must make the full source code freely available as
//    well.
//    Usage of the _information_ contained in the source code is free for any use.
//    However, given the amount of time and energy it took to collect this
//    information, if you find new information we would appreciate if you made it
//    freely available as well.
//

#include "wincompat.h"
#include <stdio.h>
#include <string.h>

//#include <SDL/SDL.h>
//#include <unistd.h>
//#include <stdlib.h>

//#include <crtdbg.h>
#include "AY8910.h"

#include "Common.h"
#include "Structs.h"
#include "AppleWin.h"    // For g_fh
#include "Mockingboard.h"  // For g_uTimer1IrqCount

///////////////////////////////////////////////////////////
// typedefs & dummy funcs to allow MAME code to compile:

typedef UINT8 (*mem_read_handler)(UINT32);
typedef void (*mem_write_handler)(UINT32, UINT8);

static void logerror(const char* psz, ...)
{
}

static unsigned short activecpu_get_pc()
{
  return 0;
}

//
///////////////////////////////////////////////////////////

// GPH Changed from 0x7fff: we want some headroom to add in the Apple speaker
// in the mixing phase and can avoid an unnecessary divide with the
// associated problems by simply picking smaller values.
// Note also this number can theoretically go as high as 0x3fff without
// causing post-mix clipping, but even that sounds too loud...
#define MAX_OUTPUT 0x0fff

// See AY8910_set_clock() for definition of STEP
#define STEP 0x8000

struct AY8910
{
  int Channel;
  int SampleRate;
  mem_read_handler PortAread;
  mem_read_handler PortBread;
  mem_write_handler PortAwrite;
  mem_write_handler PortBwrite;
  int register_latch;
  unsigned char Regs[16];
  int lastEnable;
  unsigned int UpdateStep;
  int PeriodA,PeriodB,PeriodC,PeriodN,PeriodE;
  int CountA,CountB,CountC,CountN,CountE;
  unsigned int VolA,VolB,VolC,VolE;
  unsigned char EnvelopeA,EnvelopeB,EnvelopeC;
  unsigned char OutputA,OutputB,OutputC,OutputN;
  signed char CountEnv;
  unsigned char Hold,Alternate,Attack,Holding;
  int RNG;
  unsigned int VolTable[32];
};

/* register id's */
#define AY_AFINE  (0)
#define AY_ACOARSE  (1)
#define AY_BFINE  (2)
#define AY_BCOARSE  (3)
#define AY_CFINE  (4)
#define AY_CCOARSE  (5)
#define AY_NOISEPER  (6)
#define AY_ENABLE  (7)
#define AY_AVOL    (8)
#define AY_BVOL    (9)
#define AY_CVOL    (10)
#define AY_EFINE  (11)
#define AY_ECOARSE  (12)
#define AY_ESHAPE  (13)

#define AY_PORTA  (14)
#define AY_PORTB  (15)


static struct AY8910 AYPSG[MAX_8910];    /* array of PSG's */

static bool g_bAYReset = false;    // Doing AY8910_reset()

//-----------------------------------------------------------------------------

//#define LOG_AY8910
#ifdef LOG_AY8910
static void LogAY8910(int n, int r, UINT uFreq)
{
  // TO DO: Determine freq from 6522 timer

  if ((g_fh == NULL) || g_bAYReset)
    return;

  static UINT nCnt = 0;
  const UINT nNumAYs = 4;        // 1..4
  if((r == 0))
  {
    if(nCnt == 0)
    {
      fprintf(g_fh, "Time : ");
      for(UINT i=0; i<nNumAYs; i++)
        fprintf(g_fh, "APer BPer CPer NP EN AV BV CV  ");
      fprintf(g_fh, "\n");
    }

    fprintf(g_fh, "%02d.%02d: ", g_uTimer1IrqCount/uFreq, g_uTimer1IrqCount%uFreq);

    for(int j=0; j<n*(3*5+5*3+1); j++)
      fprintf(g_fh, " ");

    UINT i=n;
    {
      UCHAR* pAYRegs = &AYPSG[i].Regs[0];
      fprintf(g_fh, "%04X ", *(USHORT*)&pAYRegs[AY_AFINE]);
      fprintf(g_fh, "%04X ", *(USHORT*)&pAYRegs[AY_BFINE]);
      fprintf(g_fh, "%04X ", *(USHORT*)&pAYRegs[AY_CFINE]);
      fprintf(g_fh, "%02X ", pAYRegs[AY_NOISEPER]);
      fprintf(g_fh, "%02X ", pAYRegs[AY_ENABLE]);
      fprintf(g_fh, "%02X ", pAYRegs[AY_AVOL]);
      fprintf(g_fh, "%02X ", pAYRegs[AY_BVOL]);
      fprintf(g_fh, "%02X  ", pAYRegs[AY_CVOL]);
    }
    fprintf(g_fh, "\n");

    nCnt++;
  }
}
#endif

//-----------------------------------------------------------------------------

void _AYWriteReg(int n, int r, int v)
{
  struct AY8910 *PSG = &AYPSG[n];
  int old;


  PSG->Regs[r] = v;

#ifdef LOG_AY8910
  LogAY8910(n, r, 60);
#endif

  /* A note about the period of tones, noise and envelope: for speed reasons,*/
  /* we count down from the period to 0, but careful studies of the chip     */
  /* output prove that it instead counts up from 0 until the counter becomes */
  /* greater or equal to the period. This is an important difference when the*/
  /* program is rapidly changing the period to modulate the sound.           */
  /* To compensate for the difference, when the period is changed we adjust  */
  /* our internal counter.                                                   */
  /* Also, note that period = 0 is the same as period = 1. This is mentioned */
  /* in the YM2203 data sheets. However, this does NOT apply to the Envelope */
  /* period. In that case, period = 0 is half as period = 1. */
  switch( r )
  {
  case AY_AFINE:
  case AY_ACOARSE:
    PSG->Regs[AY_ACOARSE] &= 0x0f;
    old = PSG->PeriodA;
    PSG->PeriodA = (PSG->Regs[AY_AFINE] + 256 * PSG->Regs[AY_ACOARSE]) * PSG->UpdateStep;
    if (PSG->PeriodA == 0) PSG->PeriodA = PSG->UpdateStep;
    PSG->CountA += PSG->PeriodA - old;
    if (PSG->CountA <= 0) PSG->CountA = 1;
    break;
  case AY_BFINE:
  case AY_BCOARSE:
    PSG->Regs[AY_BCOARSE] &= 0x0f;
    old = PSG->PeriodB;
    PSG->PeriodB = (PSG->Regs[AY_BFINE] + 256 * PSG->Regs[AY_BCOARSE]) * PSG->UpdateStep;
    if (PSG->PeriodB == 0) PSG->PeriodB = PSG->UpdateStep;
    PSG->CountB += PSG->PeriodB - old;
    if (PSG->CountB <= 0) PSG->CountB = 1;
    break;
  case AY_CFINE:
  case AY_CCOARSE:
    PSG->Regs[AY_CCOARSE] &= 0x0f;
    old = PSG->PeriodC;
    PSG->PeriodC = (PSG->Regs[AY_CFINE] + 256 * PSG->Regs[AY_CCOARSE]) * PSG->UpdateStep;
    if (PSG->PeriodC == 0) PSG->PeriodC = PSG->UpdateStep;
    PSG->CountC += PSG->PeriodC - old;
    if (PSG->CountC <= 0) PSG->CountC = 1;
    break;
  case AY_NOISEPER:
    PSG->Regs[AY_NOISEPER] &= 0x1f;
    old = PSG->PeriodN;
    PSG->PeriodN = PSG->Regs[AY_NOISEPER] * PSG->UpdateStep;
    if (PSG->PeriodN == 0) PSG->PeriodN = PSG->UpdateStep;
    PSG->CountN += PSG->PeriodN - old;
    if (PSG->CountN <= 0) PSG->CountN = 1;
    break;
  case AY_ENABLE:
    if ((PSG->lastEnable == -1) ||
        ((PSG->lastEnable & 0x40) != (PSG->Regs[AY_ENABLE] & 0x40)))
    {
      /* write out 0xff if port set to input */
      if (PSG->PortAwrite)
        (*PSG->PortAwrite)(0, (UINT8) ((PSG->Regs[AY_ENABLE] & 0x40) ? PSG->Regs[AY_PORTA] : 0xff));  // [TC: UINT8 cast]
    }

    if ((PSG->lastEnable == -1) ||
        ((PSG->lastEnable & 0x80) != (PSG->Regs[AY_ENABLE] & 0x80)))
    {
      /* write out 0xff if port set to input */
      if (PSG->PortBwrite)
        (*PSG->PortBwrite)(0, (UINT8) ((PSG->Regs[AY_ENABLE] & 0x80) ? PSG->Regs[AY_PORTB] : 0xff));  // [TC: UINT8 cast]
    }

    PSG->lastEnable = PSG->Regs[AY_ENABLE];
    break;
  case AY_AVOL:
    PSG->Regs[AY_AVOL] &= 0x1f;
    PSG->EnvelopeA = PSG->Regs[AY_AVOL] & 0x10;
    PSG->VolA = PSG->EnvelopeA ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_AVOL] ? PSG->Regs[AY_AVOL]*2+1 : 0];
    break;
  case AY_BVOL:
    PSG->Regs[AY_BVOL] &= 0x1f;
    PSG->EnvelopeB = PSG->Regs[AY_BVOL] & 0x10;
    PSG->VolB = PSG->EnvelopeB ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_BVOL] ? PSG->Regs[AY_BVOL]*2+1 : 0];
    break;
  case AY_CVOL:
    PSG->Regs[AY_CVOL] &= 0x1f;
    PSG->EnvelopeC = PSG->Regs[AY_CVOL] & 0x10;
    PSG->VolC = PSG->EnvelopeC ? PSG->VolE : PSG->VolTable[PSG->Regs[AY_CVOL] ? PSG->Regs[AY_CVOL]*2+1 : 0];
    break;
  case AY_EFINE:
  case AY_ECOARSE:
//    _ASSERT((PSG->Regs[AY_EFINE] == 0) && (PSG->Regs[AY_ECOARSE] == 0));
    old = PSG->PeriodE;
    PSG->PeriodE = ((PSG->Regs[AY_EFINE] + 256 * PSG->Regs[AY_ECOARSE])) * PSG->UpdateStep;
    if (PSG->PeriodE == 0) PSG->PeriodE = PSG->UpdateStep / 2;
    PSG->CountE += PSG->PeriodE - old;
    if (PSG->CountE <= 0) PSG->CountE = 1;
    break;
  case AY_ESHAPE:
//    _ASSERT(PSG->Regs[AY_ESHAPE] == 0);
    /* envelope shapes:
    C AtAlH
    0 0 x x  \___

    0 1 x x  /___

    1 0 0 0  \\\\

    1 0 0 1  \___

    1 0 1 0  \/\/
              ___
    1 0 1 1  \

    1 1 0 0  ////
              ___
    1 1 0 1  /

    1 1 1 0  /\/\

    1 1 1 1  /___

    The envelope counter on the AY-3-8910 has 16 steps. On the YM2149 it
    has twice the steps, happening twice as fast. Since the end result is
    just a smoother curve, we always use the YM2149 behaviour.
    */
    PSG->Regs[AY_ESHAPE] &= 0x0f;
    PSG->Attack = (PSG->Regs[AY_ESHAPE] & 0x04) ? 0x1f : 0x00;
    if ((PSG->Regs[AY_ESHAPE] & 0x08) == 0)
    {
      /* if Continue = 0, map the shape to the equivalent one which has Continue = 1 */
      PSG->Hold = 1;
      PSG->Alternate = PSG->Attack;
    }
    else
    {
      PSG->Hold = PSG->Regs[AY_ESHAPE] & 0x01;
      PSG->Alternate = PSG->Regs[AY_ESHAPE] & 0x02;
    }
    PSG->CountE = PSG->PeriodE;
    PSG->CountEnv = 0x1f;
    PSG->Holding = 0;
    PSG->VolE = PSG->VolTable[PSG->CountEnv ^ PSG->Attack];
    if (PSG->EnvelopeA) PSG->VolA = PSG->VolE;
    if (PSG->EnvelopeB) PSG->VolB = PSG->VolE;
    if (PSG->EnvelopeC) PSG->VolC = PSG->VolE;
    break;
  case AY_PORTA:
    if (PSG->Regs[AY_ENABLE] & 0x40)
    {
      if (PSG->PortAwrite)
        (*PSG->PortAwrite)(0, PSG->Regs[AY_PORTA]);
      else
        logerror("PC %04x: warning - write %02x to 8910 #%d Port A\n",activecpu_get_pc(),PSG->Regs[AY_PORTA],n);
    }
    else
    {
      logerror("warning: write to 8910 #%d Port A set as input - ignored\n",n);
    }
    break;
  case AY_PORTB:
    if (PSG->Regs[AY_ENABLE] & 0x80)
    {
      if (PSG->PortBwrite)
        (*PSG->PortBwrite)(0, PSG->Regs[AY_PORTB]);
      else
        logerror("PC %04x: warning - write %02x to 8910 #%d Port B\n",activecpu_get_pc(),PSG->Regs[AY_PORTB],n);
    }
    else
    {
      logerror("warning: write to 8910 #%d Port B set as input - ignored\n",n);
    }
    break;
  }
}


// /length/ is the number of samples we require
// NB. This should be called at twice the 6522 IRQ rate or (eg) 60Hz if no IRQ.
void AY8910Update(int chip,INT16 **buffer,int length)  // [TC: Removed static]
{
  struct AY8910 *PSG = &AYPSG[chip];
  INT16 *buf1,*buf2,*buf3;
  int outn;

  buf1 = buffer[0];
  buf2 = buffer[1];
  buf3 = buffer[2];


  /* The 8910 has three outputs, each output is the mix of one of the three */
  /* tone generators and of the (single) noise generator. The two are mixed */
  /* BEFORE going into the DAC. The formula to mix each channel is: */
  /* (ToneOn | ToneDisable) & (NoiseOn | NoiseDisable). */
  /* Note that this means that if both tone and noise are disabled, the output */
  /* is 1, not 0, and can be modulated changing the volume. */


  /* If the channels are disabled, set their output to 1, and increase the */
  /* counter, if necessary, so they will not be inverted during this update. */
  /* Setting the output to 1 is necessary because a disabled channel is locked */
  /* into the ON state (see above); and it has no effect if the volume is 0. */
  /* If the volume is 0, increase the counter, but don't touch the output. */
  if (PSG->Regs[AY_ENABLE] & 0x01)
  {
    if (PSG->CountA <= length*STEP) PSG->CountA += length*STEP;
    PSG->OutputA = 1;
  }
  else if (PSG->Regs[AY_AVOL] == 0)
  {
    /* note that I do count += length, NOT count = length + 1. You might think */
    /* it's the same since the volume is 0, but doing the latter could cause */
    /* interferencies when the program is rapidly modulating the volume. */
    if (PSG->CountA <= length*STEP) PSG->CountA += length*STEP;
  }
  if (PSG->Regs[AY_ENABLE] & 0x02)
  {
    if (PSG->CountB <= length*STEP) PSG->CountB += length*STEP;
    PSG->OutputB = 1;
  }
  else if (PSG->Regs[AY_BVOL] == 0)
  {
    if (PSG->CountB <= length*STEP) PSG->CountB += length*STEP;
  }
  if (PSG->Regs[AY_ENABLE] & 0x04)
  {
    if (PSG->CountC <= length*STEP) PSG->CountC += length*STEP;
    PSG->OutputC = 1;
  }
  else if (PSG->Regs[AY_CVOL] == 0)
  {
    if (PSG->CountC <= length*STEP) PSG->CountC += length*STEP;
  }

  /* for the noise channel we must not touch OutputN - it's also not necessary */
  /* since we use outn. */
  if ((PSG->Regs[AY_ENABLE] & 0x38) == 0x38)  /* all off */
    if (PSG->CountN <= length*STEP) PSG->CountN += length*STEP;

  outn = (PSG->OutputN | PSG->Regs[AY_ENABLE]);


  /* buffering loop */
  while (length)
  {
    int vola,volb,volc;
    int left;


    /* vola, volb and volc keep track of how long each square wave stays */
    /* in the 1 position during the sample period. */
    vola = volb = volc = 0;

    left = STEP;
    do
    {
      int nextevent;


      if (PSG->CountN < left) nextevent = PSG->CountN;
      else nextevent = left;

      if (outn & 0x08)
      {
        if (PSG->OutputA) vola += PSG->CountA;
        PSG->CountA -= nextevent;
        /* PeriodA is the half period of the square wave. Here, in each */
        /* loop I add PeriodA twice, so that at the end of the loop the */
        /* square wave is in the same status (0 or 1) it was at the start. */
        /* vola is also incremented by PeriodA, since the wave has been 1 */
        /* exactly half of the time, regardless of the initial position. */
        /* If we exit the loop in the middle, OutputA has to be inverted */
        /* and vola incremented only if the exit status of the square */
        /* wave is 1. */
        while (PSG->CountA <= 0)
        {
          PSG->CountA += PSG->PeriodA;
          if (PSG->CountA > 0)
          {
            PSG->OutputA ^= 1;
            if (PSG->OutputA) vola += PSG->PeriodA;
            break;
          }
          PSG->CountA += PSG->PeriodA;
          vola += PSG->PeriodA;
        }
        if (PSG->OutputA) vola -= PSG->CountA;
      }
      else
      {
        PSG->CountA -= nextevent;
        while (PSG->CountA <= 0)
        {
          PSG->CountA += PSG->PeriodA;
          if (PSG->CountA > 0)
          {
            PSG->OutputA ^= 1;
            break;
          }
          PSG->CountA += PSG->PeriodA;
        }
      }

      if (outn & 0x10)
      {
        if (PSG->OutputB) volb += PSG->CountB;
        PSG->CountB -= nextevent;
        while (PSG->CountB <= 0)
        {
          PSG->CountB += PSG->PeriodB;
          if (PSG->CountB > 0)
          {
            PSG->OutputB ^= 1;
            if (PSG->OutputB) volb += PSG->PeriodB;
            break;
          }
          PSG->CountB += PSG->PeriodB;
          volb += PSG->PeriodB;
        }
        if (PSG->OutputB) volb -= PSG->CountB;
      }
      else
      {
        PSG->CountB -= nextevent;
        while (PSG->CountB <= 0)
        {
          PSG->CountB += PSG->PeriodB;
          if (PSG->CountB > 0)
          {
            PSG->OutputB ^= 1;
            break;
          }
          PSG->CountB += PSG->PeriodB;
        }
      }

      if (outn & 0x20)
      {
        if (PSG->OutputC) volc += PSG->CountC;
        PSG->CountC -= nextevent;
        while (PSG->CountC <= 0)
        {
          PSG->CountC += PSG->PeriodC;
          if (PSG->CountC > 0)
          {
            PSG->OutputC ^= 1;
            if (PSG->OutputC) volc += PSG->PeriodC;
            break;
          }
          PSG->CountC += PSG->PeriodC;
          volc += PSG->PeriodC;
        }
        if (PSG->OutputC) volc -= PSG->CountC;
      }
      else
      {
        PSG->CountC -= nextevent;
        while (PSG->CountC <= 0)
        {
          PSG->CountC += PSG->PeriodC;
          if (PSG->CountC > 0)
          {
            PSG->OutputC ^= 1;
            break;
          }
          PSG->CountC += PSG->PeriodC;
        }
      }

      PSG->CountN -= nextevent;
      if (PSG->CountN <= 0)
      {
        /* Is noise output going to change? */
        if ((PSG->RNG + 1) & 2)  /* (bit0^bit1)? */
        {
          PSG->OutputN = ~PSG->OutputN;
          outn = (PSG->OutputN | PSG->Regs[AY_ENABLE]);
        }

        /* The Random Number Generator of the 8910 is a 17-bit shift */
        /* register. The input to the shift register is bit0 XOR bit3 */
        /* (bit0 is the output). This was verified on AY-3-8910 and YM2149 chips. */

        /* The following is a fast way to compute bit17 = bit0^bit3. */
        /* Instead of doing all the logic operations, we only check */
        /* bit0, relying on the fact that after three shifts of the */
        /* register, what now is bit3 will become bit0, and will */
        /* invert, if necessary, bit14, which previously was bit17. */
        if (PSG->RNG & 1) PSG->RNG ^= 0x24000; /* This version is called the "Galois configuration". */
        PSG->RNG >>= 1;
        PSG->CountN += PSG->PeriodN;
      }

      left -= nextevent;
    } while (left > 0);

    /* update envelope */
    if (PSG->Holding == 0)
    {
      PSG->CountE -= STEP;
      if (PSG->CountE <= 0)
      {
        do
        {
          PSG->CountEnv--;
          PSG->CountE += PSG->PeriodE;
        } while (PSG->CountE <= 0);

        /* check envelope current position */
        if (PSG->CountEnv < 0)
        {
          if (PSG->Hold)
          {
            if (PSG->Alternate)
              PSG->Attack ^= 0x1f;
            PSG->Holding = 1;
            PSG->CountEnv = 0;
          }
          else
          {
            /* if CountEnv has looped an odd number of times (usually 1), */
            /* invert the output. */
            if (PSG->Alternate && (PSG->CountEnv & 0x20))
               PSG->Attack ^= 0x1f;

            PSG->CountEnv &= 0x1f;
          }
        }

        PSG->VolE = PSG->VolTable[PSG->CountEnv ^ PSG->Attack];
        /* reload volume */
        if (PSG->EnvelopeA) PSG->VolA = PSG->VolE;
        if (PSG->EnvelopeB) PSG->VolB = PSG->VolE;
        if (PSG->EnvelopeC) PSG->VolC = PSG->VolE;
      }
    }

#if 0
    *(buf1++) = (vola * PSG->VolA) / STEP;
    *(buf2++) = (volb * PSG->VolB) / STEP;
    *(buf3++) = (volc * PSG->VolC) / STEP;
#else
    // Output PCM wave [-32768...32767] instead of MAME's voltage level [0...32767]
    // - This allows for better s/w mixing

    if(PSG->VolA)
    {
      if(vola)
        *(buf1++) = (vola * PSG->VolA) / STEP;
      else
        *(buf1++) = - (int) PSG->VolA;
    }
    else
    {
      *(buf1++) = 0;
    }

    //

    if(PSG->VolB)
    {
      if(volb)
        *(buf2++) = (volb * PSG->VolB) / STEP;
      else
        *(buf2++) = - (int) PSG->VolB;
    }
    else
    {
      *(buf2++) = 0;
    }

    //

    if(PSG->VolC)
    {
      if(volc)
        *(buf3++) = (volc * PSG->VolC) / STEP;
      else
        *(buf3++) = - (int) PSG->VolC;
    }
    else
    {
      *(buf3++) = 0;
    }
#endif

    length--;
  }
}


static void AY8910_set_clock(int chip,int clock)
{
  struct AY8910 *PSG = &AYPSG[chip];

  /* the step clock for the tone and noise generators is the chip clock    */
  /* divided by 8; for the envelope generator of the AY-3-8910, it is half */
  /* that much (clock/16), but the envelope of the YM2149 goes twice as    */
  /* fast, therefore again clock/8.                                        */
  /* Here we calculate the number of steps which happen during one sample  */
  /* at the given sample rate. No. of events = sample rate / (clock/8).    */
  /* STEP is a multiplier used to turn the fraction into a fixed point     */
  /* number.                                                               */
  PSG->UpdateStep = (unsigned int) (((double)STEP * PSG->SampleRate * 8 + clock/2) / clock);  // [TC: unsigned int cast]
}


static void build_mixer_table(int chip)
{
  struct AY8910 *PSG = &AYPSG[chip];
  int i;
  double out;


  /* calculate the volume->voltage conversion table */
  /* The AY-3-8910 has 16 levels, in a logarithmic scale (3dB per step) */
  /* The YM2149 still has 16 levels for the tone generators, but 32 for */
  /* the envelope generator (1.5dB per step). */
  out = MAX_OUTPUT;
  for (i = 31;i > 0;i--)
  {
    PSG->VolTable[i] = (unsigned int) (out + 0.5);  /* round to nearest */  // [TC: unsigned int cast]

    out /= 1.188502227;  /* = 10 ^ (1.5/20) = 1.5dB */
  }
  PSG->VolTable[0] = 0;
}


#if 0
void ay8910_write_ym(int chip, int addr, int data)
{
  struct AY8910 *PSG = &AYPSG[chip];

//  if (addr & 1)
//  {  /* Data port */
//    int r = PSG->register_latch;
    int r = addr;

    if (r > 15) return;
    if (r < 14)
    {
      if (r == AY_ESHAPE || PSG->Regs[r] != data)
      {
        /* update the output buffer before changing the register */
//        stream_update(PSG->Channel,0);
        AY8910Update(chip, INT16 **buffer, int length)
      }
    }

    _AYWriteReg(PSG,r,data);
  }
//  else
//  {  /* Register port */
//    PSG->register_latch = data & 0x0f;
//  }
}
#endif


void AY8910_reset(int chip)
{
  g_bAYReset = true;

  int i;
  struct AY8910 *PSG = &AYPSG[chip];

  PSG->register_latch = 0;
  PSG->RNG = 1;
  PSG->OutputA = 0;
  PSG->OutputB = 0;
  PSG->OutputC = 0;
  PSG->OutputN = 0xff;
  PSG->lastEnable = -1;  /* force a write */
  for (i = 0;i < AY_PORTA;i++)
    _AYWriteReg(chip,i,0);  /* AYWriteReg() uses the timer system; we cannot */
                /* call it at this time because the timer system */
                /* has not been initialized. */

  g_bAYReset = false;
}

//-------------------------------------

void AY8910_InitAll(int nClock, int nSampleRate)
{
  for(int nChip=0; nChip<MAX_8910; nChip++)
  {
    struct AY8910 *PSG = &AYPSG[nChip];

    memset(PSG,0,sizeof(struct AY8910));
    PSG->SampleRate = nSampleRate;

    PSG->PortAread = NULL;
    PSG->PortBread = NULL;
    PSG->PortAwrite = NULL;
    PSG->PortBwrite = NULL;

    AY8910_set_clock(nChip, nClock);

    build_mixer_table(nChip);
  }
}

//-------------------------------------

void AY8910_InitClock(int nClock)
{
  for(int nChip=0; nChip<MAX_8910; nChip++)
  {
    AY8910_set_clock(nChip, nClock);
  }
}

//-------------------------------------

BYTE* AY8910_GetRegsPtr(UINT nAyNum)
{
  if(nAyNum >= MAX_8910)
    return NULL;

  return &AYPSG[nAyNum].Regs[0];
}