git @ Cat's Eye Technologies JaC64 / master resid / SID.java
master

Tree @master (Download .tar.gz)

SID.java @masterraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
/**
 * encoding: UTF-8
 * This file is part of reSID, a MOS6581 SID emulator engine.
 * Copyright (C) 2004  Dag Lem <resid@nimrod.no>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 * 
 * @author Ken Händel
 *
 */
package resid;

import resid.ISIDDefs.chip_model;
import resid.ISIDDefs.sampling_method;

public class SID {

	/**
	 * This is a patch against ReSID
	 *         engine in libsidplay2-2.1.1 to make its sound closer to 6581R4
	 *         chip.<BR>
	 * 
	 * http://bel.fi/~alankila/c64-sw/
	 * 
	 * <P>
	 * <B>Good simulation of strong lead and bass distortion.</B> Tel's leads,
	 * Jeff's bass, Mechanicus's extreme distortion: it all seems to reproduce
	 * quite nicely.
	 * 
	 * <P>
	 * <B>Good simulation of advanced effects peculiar to 6581</B>, especially
	 * on Jeff's songs that target 6581R4.
	 * 
	 * <P>
	 * <B>Parameters are now in sidplay2.ini file.</B> No recompile is
	 * necessary when testing alternative parameters.
	 * 
	 * <P>
	 * <B>Bugs in some songs, especially related to lowpass filter output.</B>
	 * The middle part of Spaceman Salutes Commodore and intro for Snake Disco
	 * are incorrectly rendered. (ReSID's linear filter is totally wrong with
	 * them too.) Vendetta probably gets too much edge in the bass, too. It
	 * seems that some kind of additional low-pass filtering needs to happen
	 * during so far unknown filter conditions.
	 * <P>
	 * <UL>
	 * <LI> 8.12.2007 Separate parameters for band-pass (high) and low-pass
	 * (low) distortion. This doubles the number of tunables, but seems like a
	 * necessary step to open experimentation on this front.
	 * <LI> 6.12.2007 New distortion algorithm. After I scratched the whole
	 * model of substracting filter states from each other. The new model simply
	 * calculates distortion by mixing in the filter state terms and input in
	 * linear combination. The following rules seem to apply:
	 * <OL>
	 * <LI> Vlp term must be about 0.9. More than that, and Jeff's bass sounds
	 * lose their edge. Too little, and pretty much everything distorts wrong.
	 * <LI> Vbp term be something negative like -0.5 or -1 or Vendetta and
	 * Meanwhile The Planet doesn't work.
	 * <LI> Vhp must be small or the distortion loses its "edge".
	 * </OL>
	 * 
	 * The new model has one important property above the previous one: it only
	 * distorts the other half-wave, the same which can be seen distorted in SID
	 * samplings, too. Therefore it makes for more complicated distorted sounds,
	 * and better replicates the effects in f.e. Mechanicus.
	 * <LI> 5.12.2007 Nearly doubled the impact of the bp-hp term. This improves
	 * Elite and Shades quite a bit, without seeming to negatively impact other
	 * songs.
	 * <LI> 4.12.2007 Made tunables out of the rest of the distortion
	 * parameters, save from one that I just added: low-pass filtering for my
	 * crude w0_eff term. This seems to reduce the artifacts on Robocop 3, and
	 * generally doesn't seem to harm the songs.
	 * <LI> 3.12.2007 A new distortion algorithm. A lot of time has passed. I
	 * made some improvements that force more distortion out of the model. I
	 * feel that this reinstates some of my LEADDIST effects and should be
	 * closer to correct model. I'm reasonably happy about how it turned out.
	 * This is definitely the best all-around emulation to date.
	 * 
	 * I also made the distortion tunable via config file, so the thing is sane
	 * and doesn't trash 8580 any more.
	 * <LI> 18.4.2007 Oops, a few months passed as I was busy at work.
	 * 
	 * I've got rid of the LEADDIST effect, simply accepted that things will not
	 * work with it. I hope to be able to replace it with another trick up my
	 * sleeve, but so far the new songs and patch probably constitute a step
	 * backwards. Maybe.
	 * <LI> 13.2.2007 Defeat with the masterful TBB songs such as 0_N_0 and
	 * Meanwhile The Planet. The 0_N_0 makes a lot of snapping because in a real
	 * chip the distortion terms are "filtered" by the other filter components,
	 * while mine are filtered by a static ad-hoc estimate. So, the snapping
	 * here comes from the LEADDIST term and it doesn't make the right kind of
	 * effect.
	 * 
	 * Meanwhile The Planet makes masterfully precise use of the filter, and
	 * there isn't enough distortion for ReSID rendition to be palatable. Thanks
	 * to Grue for digging these songs up. Also fixed invalid sidplay2.ini
	 * configuration file (was not using 6581R4 curve). This, too, was spotted
	 * by Grue.
	 * 
	 * I suspect Snake Disco might be fixed by accounting for the loss of
	 * intensity of sound with the Vbp op-amp distortion. I made some
	 * measurements last night and discovered that level of lp and hp outputs
	 * dropped dramatically when bp was driven to distortion. I observed loss of
	 * up to 20 dB. I probably have to make many more measurements to allow
	 * mapping an estimate for this behaviour.
	 * <LI> 12.2.2007 I added a minor tweak, adding an estimate of the resonance
	 * term in the op-amp loading measurement. I also made the bass distortion
	 * slightly more prominent, although it still isn't so harsh as the real
	 * chip produces.
	 * <LI> 11.2.2007 I decided the price for fixing RoboCop 3 on 10.2. changes
	 * was too high to pay. It put a few dB of distortion back and migrated the
	 * distortion back to later time. Other changes in frequency drift
	 * implementation however helped a lot even with RoboCop 3, although I do
	 * think it still distorts too much. I think overall I'm now better off.
	 * 
	 * I also moved the distortion term computation into the filter clocking
	 * function, so that if output is being requested at some different rate
	 * than the filter is clocked, the lowpass filtering would still be computed
	 * similarly. This bit me because I had this stupid OptimiseLevel
	 * PerformanceHacks accidentally enabled.
	 * <LI> 10.2.2007 I made the distortion term to start earlier but also more
	 * delicate. (Reduced distortion by 6 dB.) This fixed RoboCop_3, SYS4096 and
	 * improved locutox's cover of Purple Shades. (Not included on sample set.)
	 * I also set bass level to -4.4 dB, because it comes about 1.5 dB louder
	 * than treble or bandpass. This is in full contrast to comments in ReSID
	 * that claim no level difference exists. Strange, but I can see it plain as
	 * day on FFT.
	 * <LI> 3.2.2007 - 9.2.2007 Creation and tuning the model...
	 * </UL>
	 * @author Antti Lankila (alankila@bel.fi)
	 */
	public static boolean ANTTI_LANKILA_PATCH = true;

	/**
	 * Read/Write State.
	 * 
	 * @author Ken Händel
	 * 
	 */
	public class State {
		public char sid_register[] = new char[0x20];

		public int /* reg8 */bus_value;

		public int /* cycle_count */bus_value_ttl;

		public int /* reg24 */accumulator[] = new int[3];

		public int /* reg24 */shift_register[] = new int[3];

		public int /* reg16 */rate_counter[] = new int[3];

		public int /* reg16 */rate_counter_period[] = new int[3];

		public int /* reg16 */exponential_counter[] = new int[3];

		public int /* reg16 */exponential_counter_period[] = new int[3];

		int /* reg8 */envelope_counter[] = new int[3];

		public EnvelopeGenerator.State envelope_state[] = new EnvelopeGenerator.State[3];

		public boolean hold_zero[] = new boolean[3];

		/**
		 * Constructor.
		 */
		public State() {
			int i;

			for (i = 0; i < 0x20; i++) {
				sid_register[i] = 0;
			}

			bus_value = 0;
			bus_value_ttl = 0;

			for (i = 0; i < 3; i++) {
				accumulator[i] = 0;
				shift_register[i] = 0x7ffff8;
				rate_counter[i] = 0;
				rate_counter_period[i] = 9;
				exponential_counter[i] = 0;
				exponential_counter_period[i] = 1;
				envelope_counter[i] = 0;
				envelope_state[i] = EnvelopeGenerator.State.RELEASE;
				hold_zero[i] = true;
			}
		}

	}

	protected Voice voice[] = new Voice[] { new Voice(), new Voice(),
			new Voice() };

	public Filter filter = new Filter();

	protected ExternalFilter extfilt = new ExternalFilter();

	protected Potentiometer potx = new Potentiometer();

	protected Potentiometer poty = new Potentiometer();

	protected int /* reg8 */bus_value;

	protected int /* cycle_count */bus_value_ttl;

	protected double clock_frequency;

	/**
	 * External audio input.
	 */
	protected int ext_in;

	/**
	 * Resampling constants. The error in interpolated lookup is bounded by
	 * 1.234/L^2, while the error in non-interpolated lookup is bounded by
	 * 0.7854/L + 0.4113/L^2, see
	 * http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html For a
	 * resolution of 16 bits this yields L >= 285 and L >= 51473, respectively.
	 */
	protected static final int FIR_N = 125;

	/**
	 * Resampling constants. The error in interpolated lookup is bounded by
	 * 1.234/L^2, while the error in non-interpolated lookup is bounded by
	 * 0.7854/L + 0.4113/L^2, see
	 * http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html For a
	 * resolution of 16 bits this yields L >= 285 and L >= 51473, respectively.
	 */
	protected static final int FIR_RES_INTERPOLATE = 285;

	/**
	 * Resampling constants. The error in interpolated lookup is bounded by
	 * 1.234/L^2, while the error in non-interpolated lookup is bounded by
	 * 0.7854/L + 0.4113/L^2, see
	 * http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html For a
	 * resolution of 16 bits this yields L >= 285 and L >= 51473, respectively.
	 */
	protected static final int FIR_RES_FAST = 51473;

	/**
	 * Resampling constants. The error in interpolated lookup is bounded by
	 * 1.234/L^2, while the error in non-interpolated lookup is bounded by
	 * 0.7854/L + 0.4113/L^2, see
	 * http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html For a
	 * resolution of 16 bits this yields L >= 285 and L >= 51473, respectively.
	 */
	protected static final int FIR_SHIFT = 15;

	/**
	 * Resampling constants. The error in interpolated lookup is bounded by
	 * 1.234/L^2, while the error in non-interpolated lookup is bounded by
	 * 0.7854/L + 0.4113/L^2, see
	 * http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html For a
	 * resolution of 16 bits this yields L >= 285 and L >= 51473, respectively.
	 */
	protected static final int RINGSIZE = 16384;

	/**
	 * Fixpoint constants (16.16 bits).
	 */
	protected static final int FIXP_SHIFT = 16;

	/**
	 * Fixpoint constants (16.16 bits).
	 */
	protected static final int FIXP_MASK = 0xffff;

	/**
	 * Sampling variables.
	 */
	protected sampling_method sampling;

	/**
	 * Sampling variables.
	 */
	protected int /* cycle_count */cycles_per_sample;

	/**
	 * Sampling variables.
	 */
	protected int /* cycle_count */sample_offset;

	/**
	 * Sampling variables.
	 */
	protected int sample_index;

	/**
	 * Sampling variables.
	 */
	protected short sample_prev;

	/**
	 * Sampling variables.
	 */
	protected int fir_N;

	/**
	 * Sampling variables.
	 */
	protected int fir_RES;

	/**
	 * Ring buffer with overflow for contiguous storage of RINGSIZE samples.
	 */
	protected short sample[];

	/**
	 * FIR_RES filter tables (FIR_N*FIR_RES).
	 */
	protected short fir[];

	/**
	 * Constructor.
	 */
	public SID() {
		// Initialize pointers.
		sample = null;
		fir = null;

		voice[0].set_sync_source(voice[2]);
		voice[1].set_sync_source(voice[0]);
		voice[2].set_sync_source(voice[1]);

		set_sampling_parameters(985248, sampling_method.SAMPLE_FAST, 44100, -1,
				0.97);

		bus_value = 0;
		bus_value_ttl = 0;

		ext_in = 0;
	}

	/**
	 * Set chip model.
	 * 
	 * @param model
	 */
	public void set_chip_model(chip_model model) {
		for (int i = 0; i < 3; i++) {
			voice[i].set_chip_model(model);
		}

		filter.set_chip_model(model);
		extfilt.set_chip_model(model);
	}

	public void set_distortion_properties(int Lt, int Ls, int Ll, int Lb,
			int Lh, int Ht, int Hs, int Hl, int Hb, int Hh) {
		filter
				.set_distortion_properties(Lt, Ls, Ll, Lb, Lh, Ht, Hs, Hl, Hb,
						Hh);
	}

	/**
	 * SID reset.
	 */
	public void reset() {
		for (int i = 0; i < 3; i++) {
			voice[i].reset();
		}
		filter.reset();
		extfilt.reset();

		bus_value = 0;
		bus_value_ttl = 0;
	}

	/**
	 * 16-bit input (EXT IN). Write 16-bit sample to audio input. NB! The caller
	 * is responsible for keeping the value within 16 bits. Note that to mix in
	 * an external audio signal, the signal should be resampled to 1MHz first to
	 * avoid sampling noise.
	 * 
	 * @param sample
	 */
	public void input(int sample) {
		// Voice outputs are 20 bits. Scale up to match three voices in order
		// to facilitate simulation of the MOS8580 "digi boost" hardware hack.
		ext_in = (sample << 4) * 3;
	}

	/**
	 * 16-bit output (AUDIO OUT). Read sample from audio output. Both 16-bit and
	 * n-bit output is provided.
	 * 
	 * @return
	 */
	public int output() {
		final int range = 1 << 16;
		final int half = range >> 1;
		int sample = extfilt.output()
				/ (((4095 * 255) >> 7) * 3 * 15 * 2 / range);
		if (sample >= half) {
			return half - 1;
		}
		if (sample < -half) {
			return -half;
		}
		return sample;
	}

	/**
	 * n-bit output.
	 * 
	 * @param bits
	 * @return
	 */
	public int output(int bits) {
		final int range = 1 << bits;
		final int half = range >> 1;
		int sample = extfilt.output()
				/ ((4095 * 255 >> 7) * 3 * 15 * 2 / range);
		if (sample >= half) {
			return half - 1;
		}
		if (sample < -half) {
			return -half;
		}
		return sample;
	}

	/**
	 * Read registers.
	 * <P>
	 * Reading a write only register returns the last byte written to any SID
	 * register. The individual bits in this value start to fade down towards
	 * zero after a few cycles. All bits reach zero within approximately $2000 -
	 * $4000 cycles. It has been claimed that this fading happens in an orderly
	 * fashion, however sampling of write only registers reveals that this is
	 * not the case. NB! This is not correctly modeled. The actual use of write
	 * only registers has largely been made in the belief that all SID registers
	 * are readable. To support this belief the read would have to be done
	 * immediately after a write to the same register (remember that an
	 * intermediate write to another register would yield that value instead).
	 * With this in mind we return the last value written to any SID register
	 * for $2000 cycles without modeling the bit fading.
	 * 
	 * @param offset
	 * @return
	 */
	public int /* reg8 */read(int /* reg8 */offset) {
		switch (offset) {
		case 0x19:
			return potx.readPOT();
		case 0x1a:
			return poty.readPOT();
		case 0x1b:
			return voice[2].wave.readOSC();
		case 0x1c:
			return voice[2].envelope.readENV();
		default:
			return bus_value;
		}
	}

	/**
	 * Write registers.
	 * 
	 * @param offset
	 * @param value
	 */
	public void write(int /* reg8 */offset, int /* reg8 */value) {
		bus_value = value;
		bus_value_ttl = 0x2000;

		switch (offset) {
		case 0x00:
			voice[0].wave.writeFREQ_LO(value);
			break;
		case 0x01:
			voice[0].wave.writeFREQ_HI(value);
			break;
		case 0x02:
			voice[0].wave.writePW_LO(value);
			break;
		case 0x03:
			voice[0].wave.writePW_HI(value);
			break;
		case 0x04:
			voice[0].writeCONTROL_REG(value);
			break;
		case 0x05:
			voice[0].envelope.writeATTACK_DECAY(value);
			break;
		case 0x06:
			voice[0].envelope.writeSUSTAIN_RELEASE(value);
			break;
		case 0x07:
			voice[1].wave.writeFREQ_LO(value);
			break;
		case 0x08:
			voice[1].wave.writeFREQ_HI(value);
			break;
		case 0x09:
			voice[1].wave.writePW_LO(value);
			break;
		case 0x0a:
			voice[1].wave.writePW_HI(value);
			break;
		case 0x0b:
			voice[1].writeCONTROL_REG(value);
			break;
		case 0x0c:
			voice[1].envelope.writeATTACK_DECAY(value);
			break;
		case 0x0d:
			voice[1].envelope.writeSUSTAIN_RELEASE(value);
			break;
		case 0x0e:
			voice[2].wave.writeFREQ_LO(value);
			break;
		case 0x0f:
			voice[2].wave.writeFREQ_HI(value);
			break;
		case 0x10:
			voice[2].wave.writePW_LO(value);
			break;
		case 0x11:
			voice[2].wave.writePW_HI(value);
			break;
		case 0x12:
			voice[2].writeCONTROL_REG(value);
			break;
		case 0x13:
			voice[2].envelope.writeATTACK_DECAY(value);
			break;
		case 0x14:
			voice[2].envelope.writeSUSTAIN_RELEASE(value);
			break;
		case 0x15:
			filter.writeFC_LO(value);
			break;
		case 0x16:
			filter.writeFC_HI(value);
			break;
		case 0x17:
			filter.writeRES_FILT(value);
			break;
		case 0x18:
			filter.writeMODE_VOL(value);
			break;
		default:
			break;
		}
	}

	/**
	 * SID voice muting.
	 * 
	 * @param channel
	 * @param enable
	 */
	public void mute(int /* reg8 */channel, boolean enable) {
		// Only have 3 voices!
		if (channel >= 3)
			return;

		voice[channel].mute(enable);
	}

	/**
	 * Read state.
	 * 
	 * @return
	 */
	public State read_state() {
		State state = new State();
		int i, j;

		for (i = 0, j = 0; i < 3; i++, j += 7) {
			WaveformGenerator wave = voice[i].wave;
			EnvelopeGenerator envelope = voice[i].envelope;
			state.sid_register[j + 0] = (char) (wave.freq & 0xff);
			state.sid_register[j + 1] = (char) (wave.freq >> 8);
			state.sid_register[j + 2] = (char) (wave.pw & 0xff);
			state.sid_register[j + 3] = (char) (wave.pw >> 8);
			state.sid_register[j + 4] = (char) ((wave.waveform << 4)
					| ((wave.test != 0) ? 0x08 : 0)
					| ((wave.ring_mod != 0) ? 0x04 : 0)
					| ((wave.sync != 0) ? 0x02 : 0) | ((envelope.gate != 0) ? 0x01
					: 0));
			state.sid_register[j + 5] = (char) ((envelope.attack << 4) | envelope.decay);
			state.sid_register[j + 6] = (char) ((envelope.sustain << 4) | envelope.release);
		}

		state.sid_register[j++] = (char) (filter.fc & 0x007);
		state.sid_register[j++] = (char) (filter.fc >> 3);
		state.sid_register[j++] = (char) ((filter.res << 4) | filter.filt);
		state.sid_register[j++] = (char) (((filter.voice3off != 0) ? 0x80 : 0)
				| (filter.hp_bp_lp << 4) | filter.vol);

		// These registers are superfluous, but included for completeness.
		for (; j < 0x1d; j++) {
			state.sid_register[j] = (char) (read(j));
		}
		for (; j < 0x20; j++) {
			state.sid_register[j] = 0;
		}

		state.bus_value = bus_value;
		state.bus_value_ttl = bus_value_ttl;

		for (i = 0; i < 3; i++) {
			state.accumulator[i] = voice[i].wave.accumulator;
			state.shift_register[i] = voice[i].wave.shift_register;
			state.rate_counter[i] = voice[i].envelope.rate_counter;
			state.rate_counter_period[i] = voice[i].envelope.rate_period;
			state.exponential_counter[i] = voice[i].envelope.exponential_counter;
			state.exponential_counter_period[i] = voice[i].envelope.exponential_counter_period;
			state.envelope_counter[i] = voice[i].envelope.envelope_counter;
			state.envelope_state[i] = voice[i].envelope.state;
			state.hold_zero[i] = voice[i].envelope.hold_zero;
		}

		return state;
	}

	/**
	 * Write state.
	 * 
	 * @param state
	 */
	public void write_state(final State state) {
		int i;

		for (i = 0; i <= 0x18; i++) {
			write(i, state.sid_register[i]);
		}

		bus_value = state.bus_value;
		bus_value_ttl = state.bus_value_ttl;

		for (i = 0; i < 3; i++) {
			voice[i].wave.accumulator = state.accumulator[i];
			voice[i].wave.shift_register = state.shift_register[i];
			voice[i].envelope.rate_counter = state.rate_counter[i];
			voice[i].envelope.rate_period = state.rate_counter_period[i];
			voice[i].envelope.exponential_counter = state.exponential_counter[i];
			voice[i].envelope.exponential_counter_period = state.exponential_counter_period[i];
			voice[i].envelope.envelope_counter = state.envelope_counter[i];
			voice[i].envelope.state = state.envelope_state[i];
			voice[i].envelope.hold_zero = state.hold_zero[i];
		}
	}

	/**
	 * Enable filter.
	 * 
	 * @param enable
	 */
	public void enable_filter(boolean enable) {
		filter.enable_filter(enable);
	}

	/**
	 * Enable external filter.
	 * 
	 * @param enable
	 */
	public void enable_external_filter(boolean enable) {
		extfilt.enable_filter(enable);
	}

	/**
	 * I0() computes the 0th order modified Bessel function of the first kind.
	 * This function is originally from resample-1.5/filterkit.c by J. O. Smith.
	 * 
	 * @param x
	 * @return
	 */
	protected double I0(double x) {
		// Max error acceptable in I0.
		final double I0e = 1e-6;

		double sum, u, halfx, temp;
		int n;

		sum = u = n = 1;
		halfx = x / 2.0;

		do {
			temp = halfx / n++;
			u *= temp * temp;
			sum += u;
		} while (u >= I0e * sum);

		return sum;
	}

	/**
	 * Setting of SID sampling parameters.
	 * <P>
	 * Use a clock freqency of 985248Hz for PAL C64, 1022730Hz for NTSC C64. The
	 * default end of passband frequency is pass_freq = 0.9*sample_freq/2 for
	 * sample frequencies up to ~ 44.1kHz, and 20kHz for higher sample
	 * frequencies.
	 * <P>
	 * For resampling, the ratio between the clock frequency and the sample
	 * frequency is limited as follows: 125*clock_freq/sample_freq < 16384 E.g.
	 * provided a clock frequency of ~ 1MHz, the sample frequency can not be set
	 * lower than ~ 8kHz. A lower sample frequency would make the resampling
	 * code overfill its 16k sample ring buffer.
	 * <P>
	 * The end of passband frequency is also limited: pass_freq <=
	 * 0.9*sample_freq/2
	 * <P>
	 * E.g. for a 44.1kHz sampling rate the end of passband frequency is limited
	 * to slightly below 20kHz. This constraint ensures that the FIR table is
	 * not overfilled.
	 * 
	 * @param clock_freq
	 * @param method
	 * @param sample_freq
	 * @param pass_freq
	 * @param filter_scale
	 * @return
	 */
	public boolean set_sampling_parameters(double clock_freq,
			sampling_method method, double sample_freq, double pass_freq,
			double filter_scale) {
		// Check resampling constraints.
		if (method == sampling_method.SAMPLE_RESAMPLE_INTERPOLATE
				|| method == sampling_method.SAMPLE_RESAMPLE_FAST) {
			// Check whether the sample ring buffer would overfill.
			if (FIR_N * clock_freq / sample_freq >= RINGSIZE) {
				return false;
			}
		}
		// The default passband limit is 0.9*sample_freq/2 for sample
		// frequencies below ~ 44.1kHz, and 20kHz for higher sample
		// frequencies.
		if (pass_freq < 0) {
			pass_freq = 20000;
			if (2 * pass_freq / sample_freq >= 0.9) {
				pass_freq = 0.9 * sample_freq / 2;
			}
		}
		// Check whether the FIR table would overfill.
		else if (pass_freq > 0.9 * sample_freq / 2) {
			return false;
		}

		// The filter scaling is only included to avoid clipping, so keep
		// it sane.
		if (filter_scale < 0.9 || filter_scale > 1.0) {
			return false;
		}

		// Set the external filter to the pass freq
		extfilt.set_sampling_parameter(pass_freq);
		clock_frequency = clock_freq;
		sampling = method;

		cycles_per_sample = (int /* cycle_count */) (clock_freq / sample_freq
				* (1 << FIXP_SHIFT) + 0.5);

		sample_offset = 0;
		sample_prev = 0;

		// FIR initialization is only necessary for resampling.
		if (method != sampling_method.SAMPLE_RESAMPLE_INTERPOLATE
				&& method != sampling_method.SAMPLE_RESAMPLE_FAST) {
			sample = null;
			fir = null;
			return true;
		}

		final double pi = 3.1415926535897932385;

		// 16 bits -> -96dB stopband attenuation.
		final double A = -20 * Math.log10(1.0 / (1 << 16));
		// A fraction of the bandwidth is allocated to the transition band,
		double dw = (1 - 2 * pass_freq / sample_freq) * pi;
		// The cutoff frequency is midway through the transition band.
		double wc = (2 * pass_freq / sample_freq + 1) * pi / 2;

		// For calculation of beta and N see the reference for the kaiserord
		// function in the MATLAB Signal Processing Toolbox:
		// http://www.mathworks.com/access/helpdesk/help/toolbox/signal/kaiserord.html
		final double beta = 0.1102 * (A - 8.7);
		final double I0beta = I0(beta);

		// The filter order will maximally be 124 with the current constraints.
		// N >= (96.33 - 7.95)/(2.285*0.1*pi) -> N >= 123
		// The filter order is equal to the number of zero crossings, i.e.
		// it should be an even number (sinc is symmetric about x = 0).
		int N = (int) ((A - 7.95) / (2.285 * dw) + 0.5);
		N += N & 1;

		double f_samples_per_cycle = sample_freq / clock_freq;
		double f_cycles_per_sample = clock_freq / sample_freq;

		// The filter length is equal to the filter order + 1.
		// The filter length must be an odd number (sinc is symmetric about x =
		// 0).
		fir_N = (int) (N * f_cycles_per_sample) + 1;
		fir_N |= 1;

		// We clamp the filter table resolution to 2^n, making the fixpoint
		// sample_offset a whole multiple of the filter table resolution.
		int res = method == sampling_method.SAMPLE_RESAMPLE_INTERPOLATE ? FIR_RES_INTERPOLATE
				: FIR_RES_FAST;
		int n = (int) Math.ceil(Math.log(res / f_cycles_per_sample)
				/ Math.log((double) 2));
		fir_RES = 1 << n;

		// Allocate memory for FIR tables.
		fir = null;
		fir = new short[fir_N * fir_RES];

		// Calculate fir_RES FIR tables for linear interpolation.
		for (int i = 0; i < fir_RES; i++) {
			int fir_offset = i * fir_N + fir_N / 2;
			double j_offset = (double) (i) / fir_RES;
			// Calculate FIR table. This is the sinc function, weighted by the
			// Kaiser window.
			for (int j = -fir_N / 2; j <= fir_N / 2; j++) {
				double jx = j - j_offset;
				double wt = wc * jx / f_cycles_per_sample;
				double temp = jx / (fir_N / 2);
				double Kaiser = Math.abs(temp) <= 1 ? I0(beta
						* Math.sqrt(1 - temp * temp))
						/ I0beta : 0;
				double sincwt = Math.abs(wt) >= 1e-6 ? Math.sin(wt) / wt : 1;
				double val = (1 << FIR_SHIFT) * filter_scale
						* f_samples_per_cycle * wc / pi * sincwt * Kaiser;
				fir[fir_offset + j] = (short) (val + 0.5);
			}
		}

		// Allocate sample buffer.
		if ((sample == null)) {
			sample = new short[RINGSIZE * 2];
		}
		// Clear sample buffer.
		for (int j = 0; j < RINGSIZE * 2; j++) {
			sample[j] = 0;
		}
		sample_index = 0;

		return true;
	}

	/**
	 * Adjustment of SID sampling frequency.
	 * <P>
	 * In some applications, e.g. a C64 emulator, it can be desirable to
	 * synchronize sound with a timer source. This is supported by adjustment of
	 * the SID sampling frequency.
	 * <P>
	 * NB! Adjustment of the sampling frequency may lead to noticeable shifts in
	 * frequency, and should only be used for interactive applications. Note
	 * also that any adjustment of the sampling frequency will change the
	 * characteristics of the resampling filter, since the filter is not
	 * rebuilt.
	 * 
	 * @param sample_freq
	 */
	public void adjust_sampling_frequency(double sample_freq) {
		cycles_per_sample = (int /* cycle_count */) (clock_frequency
				/ sample_freq * (1 << FIXP_SHIFT) + 0.5);
	}

	// ----------------------------------------------------------------------------
	// Return array of default spline interpolation points to map FC to
	// filter cutoff frequency.
	// ----------------------------------------------------------------------------
	public class FCPoints {
		public int[] /* fc_point */[] points;

		public int count;

		public FCPoints() {
		}
	}

	public void fc_default(FCPoints fcp) {
		filter.fc_default(fcp);
	}

	/**
	 * Return FC spline plotter object.
	 * 
	 * @return
	 */
	public PointPlotter fc_plotter() {
		return filter.fc_plotter();
	}

	/**
	 * SID clocking - 1 cycle.
	 */
	public void clock() {
		int i;

		// Age bus value.
		if (--bus_value_ttl <= 0) {
			bus_value = 0;
			bus_value_ttl = 0;
		}

		// Clock amplitude modulators.
		for (i = 0; i < 3; i++) {
			voice[i].envelope.clock();
		}

		// Clock oscillators.
		for (i = 0; i < 3; i++) {
			voice[i].wave.clock();
		}

		// Synchronize oscillators.
		for (i = 0; i < 3; i++) {
			voice[i].wave.synchronize();
		}

		// Clock filter.
		filter.clock(voice[0].output(), voice[1].output(), voice[2].output(),
				ext_in);

		// Clock external filter.
		extfilt.clock(filter.output());
	}

	/**
	 * SID clocking - delta_t cycles.
	 * 
	 * @param delta_t
	 */
	public void clock(int /* cycle_count */delta_t) {
		int i;

		if (delta_t <= 0) {
			return;
		}

		// Age bus value.
		bus_value_ttl -= delta_t;
		if (bus_value_ttl <= 0) {
			bus_value = 0;
			bus_value_ttl = 0;
		}

		// Clock amplitude modulators.
		for (i = 0; i < 3; i++) {
			voice[i].envelope.clock(delta_t);
		}

		// Clock and synchronize oscillators.
		// Loop until we reach the current cycle.
		int /* cycle_count */delta_t_osc = delta_t;
		while (delta_t_osc != 0) {
			int /* cycle_count */delta_t_min = delta_t_osc;

			// Find minimum number of cycles to an oscillator accumulator MSB
			// toggle.
			// We have to clock on each MSB on / MSB off for hard sync to
			// operate
			// correctly.
			for (i = 0; i < 3; i++) {
				WaveformGenerator wave = voice[i].wave;

				// It is only necessary to clock on the MSB of an oscillator
				// that is
				// a sync source and has freq != 0.
				if (!((wave.sync_dest.sync != 0) && (wave.freq != 0))) {
					continue;
				}

				int /* reg16 */freq = wave.freq;
				int /* reg24 */accumulator = wave.accumulator;

				// Clock on MSB off if MSB is on, clock on MSB on if MSB is off.
				int /* reg24 */delta_accumulator = ((accumulator & 0x800000) != 0 ? 0x1000000
						: 0x800000)
						- accumulator;

				int /* cycle_count */delta_t_next = (delta_accumulator / freq);
				if ((delta_accumulator % freq) != 0) {
					++delta_t_next;
				}

				if (delta_t_next < delta_t_min) {
					delta_t_min = delta_t_next;
				}
			}

			// Clock oscillators.
			for (i = 0; i < 3; i++) {
				voice[i].wave.clock(delta_t_min);
			}

			// Synchronize oscillators.
			for (i = 0; i < 3; i++) {
				voice[i].wave.synchronize();
			}

			delta_t_osc -= delta_t_min;
		}

		// Clock filter.
		filter.clock(delta_t, voice[0].output(), voice[1].output(), voice[2]
				.output(), ext_in);

		// Clock external filter.
		extfilt.clock(delta_t, filter.output());
	}

	public class CycleCount {
		public CycleCount(int delta_t2) {
			delta_t = delta_t2;
		}

		public int /* cycle_count */delta_t;
	}

	/**
	 * SID clocking with audio sampling. Fixpoint arithmetics is used.
	 * <P>
	 * The example below shows how to clock the SID a specified amount of cycles
	 * while producing audio output:
	 * 
	 * <pre>
	 * while (delta_t) {
	 * 	bufindex += sid.clock(delta_t, buf + bufindex, buflength - bufindex);
	 * 	write(dsp, buf, bufindex * 2);
	 * 	bufindex = 0;
	 * }
	 * </pre>
	 * 
	 * @return
	 */
	public int clock(CycleCount delta_t, short buf[], int n, int interleave) {
		switch (sampling) {
		default:
		case SAMPLE_FAST:
			return clock_fast(delta_t, buf, n, interleave);
		case SAMPLE_INTERPOLATE:
			return clock_interpolate(delta_t, buf, n, interleave);
		case SAMPLE_RESAMPLE_INTERPOLATE:
			return clock_resample_interpolate(delta_t, buf, n, interleave);
		case SAMPLE_RESAMPLE_FAST:
			return clock_resample_fast(delta_t, buf, n, interleave);
		}
	}

	/**
	 * SID clocking with audio sampling - delta clocking picking nearest sample.
	 * 
	 * @return
	 */
	protected int clock_fast(CycleCount delta_t, short buf[], int n,
			int interleave) {
		int s = 0;

		for (;;) {
			int /* cycle_count */next_sample_offset = sample_offset
					+ cycles_per_sample + (1 << (FIXP_SHIFT - 1));
			int /* cycle_count */delta_t_sample = next_sample_offset >> FIXP_SHIFT;
			if (delta_t_sample > delta_t.delta_t) {
				break;
			}
			if (s >= n) {
				return s;
			}
			clock(delta_t_sample);
			delta_t.delta_t -= delta_t_sample;
			sample_offset = (next_sample_offset & FIXP_MASK)
					- (1 << (FIXP_SHIFT - 1));
			buf[s++ * interleave] = (short) output();
		}

		clock(delta_t.delta_t);
		sample_offset -= delta_t.delta_t << FIXP_SHIFT;
		delta_t.delta_t = 0;
		return s;
	}

	/**
	 * SID clocking with audio sampling - cycle based with linear sample
	 * interpolation.
	 * <P>
	 * Here the chip is clocked every cycle. This yields higher quality sound
	 * since the samples are linearly interpolated, and since the external
	 * filter attenuates frequencies above 16kHz, thus reducing sampling noise.
	 * 
	 * @return
	 */
	protected int clock_interpolate(CycleCount delta_t, short buf[], int n,
			int interleave) {
		int s = 0;
		int i;

		for (;;) {
			int /* cycle_count */next_sample_offset = sample_offset
					+ cycles_per_sample;
			int /* cycle_count */delta_t_sample = next_sample_offset >> FIXP_SHIFT;
			if (delta_t_sample > delta_t.delta_t) {
				break;
			}
			if (s >= n) {
				return s;
			}
			for (i = 0; i < delta_t_sample - 1; i++) {
				clock();
			}
			if (i < delta_t_sample) {
				sample_prev = (short) output();
				clock();
			}

			delta_t.delta_t -= delta_t_sample;
			sample_offset = next_sample_offset & FIXP_MASK;

			short sample_now = (short) output();
			buf[s++ * interleave] = (short) (sample_prev + (sample_offset
					* (sample_now - sample_prev) >> FIXP_SHIFT));
			sample_prev = sample_now;
		}

		for (i = 0; i < delta_t.delta_t - 1; i++) {
			clock();
		}
		if (i < delta_t.delta_t) {
			sample_prev = (short) output();
			clock();
		}
		sample_offset -= delta_t.delta_t << FIXP_SHIFT;
		delta_t.delta_t = 0;
		return s;
	}

	/**
	 * SID clocking with audio sampling - cycle based with audio resampling.
	 * <P>
	 * This is the theoretically correct (and computationally intensive) audio
	 * sample generation. The samples are generated by resampling to the
	 * specified sampling frequency. The work rate is inversely proportional to
	 * the percentage of the bandwidth allocated to the filter transition band.
	 * <P>
	 * This implementation is based on the paper "A Flexible Sampling-Rate
	 * Conversion Method", by J. O. Smith and P. Gosset, or rather on the
	 * expanded tutorial on the "Digital Audio Resampling Home Page":
	 * http://www-ccrma.stanford.edu/~jos/resample/
	 * <P>
	 * By building shifted FIR tables with samples according to the sampling
	 * frequency, this implementation dramatically reduces the computational
	 * effort in the filter convolutions, without any loss of accuracy. The
	 * filter convolutions are also vectorizable on current hardware.
	 * <P>
	 * Further possible optimizations are: * An equiripple filter design could
	 * yield a lower filter order, see
	 * http://www.mwrf.com/Articles/ArticleID/7229/7229.html * The Convolution
	 * Theorem could be used to bring the complexity of convolution down from
	 * O(n*n) to O(n*log(n)) using the Fast Fourier Transform, see
	 * http://en.wikipedia.org/wiki/Convolution_theorem * Simply resampling in
	 * two steps can also yield computational savings, since the transition band
	 * will be wider in the first step and the required filter order is thus
	 * lower in this step. Laurent Ganier has found the optimal intermediate
	 * sampling frequency to be (via derivation of sum of two steps): 2 *
	 * pass_freq + sqrt [ 2 * pass_freq * orig_sample_freq * (dest_sample_freq -
	 * 2 * pass_freq) / dest_sample_freq ]
	 * <P>
	 * 
	 * @return
	 */
	protected int clock_resample_interpolate(CycleCount delta_t, short buf[],
			int n, int interleave) {
		int s = 0;

		for (;;) {
			int /* cycle_count */next_sample_offset = sample_offset
					+ cycles_per_sample;
			int /* cycle_count */delta_t_sample = next_sample_offset >> FIXP_SHIFT;
			if (delta_t_sample > delta_t.delta_t) {
				break;
			}
			if (s >= n) {
				return s;
			}
			for (int i = 0; i < delta_t_sample; i++) {
				clock();
				sample[sample_index] = sample[sample_index + RINGSIZE] = (short) output();
				++sample_index;
				sample_index &= 0x3fff;
			}
			delta_t.delta_t -= delta_t_sample;
			sample_offset = next_sample_offset & FIXP_MASK;

			int fir_offset = sample_offset * fir_RES >> FIXP_SHIFT;
			int fir_offset_rmd = sample_offset * fir_RES & FIXP_MASK;
			int fir_start = (fir_offset * fir_N);
			int sample_start = (sample_index - fir_N + RINGSIZE);

			// Convolution with filter impulse response.
			int v1 = 0;
			for (int j = 0; j < fir_N; j++) {
				v1 += sample[sample_start + j] * fir[fir_start + j];
			}

			// Use next FIR table, wrap around to first FIR table using
			// previous sample.
			if (++fir_offset == fir_RES) {
				fir_offset = 0;
				--sample_start;
			}
			fir_start = (fir_offset * fir_N);

			// Convolution with filter impulse response.
			int v2 = 0;
			for (int j = 0; j < fir_N; j++) {
				v2 += sample[sample_start + j] * fir[fir_start + j];
			}

			// Linear interpolation.
			// fir_offset_rmd is equal for all samples, it can thus be
			// factorized out:
			// sum(v1 + rmd*(v2 - v1)) = sum(v1) + rmd*(sum(v2) - sum(v1))
			int v = v1 + (fir_offset_rmd * (v2 - v1) >> FIXP_SHIFT);

			v >>= FIR_SHIFT;

			// Saturated arithmetics to guard against 16 bit sample overflow.
			final int half = 1 << 15;
			if (v >= half) {
				v = half - 1;
			} else if (v < -half) {
				v = -half;
			}

			buf[s++ * interleave] = (short) v;
		}

		for (int i = 0; i < delta_t.delta_t; i++) {
			clock();
			sample[sample_index] = sample[sample_index + RINGSIZE] = (short) output();
			++sample_index;
			sample_index &= 0x3fff;
		}
		sample_offset -= delta_t.delta_t << FIXP_SHIFT;
		delta_t.delta_t = 0;
		return s;
	}

	/**
	 * SID clocking with audio sampling - cycle based with audio resampling.
	 * 
	 * @return
	 */
	protected int clock_resample_fast(CycleCount delta_t, short buf[], int n,
			int interleave) {
		int s = 0;

		for (;;) {
			int /* cycle_count */next_sample_offset = sample_offset
					+ cycles_per_sample;
			int /* cycle_count */delta_t_sample = next_sample_offset >> FIXP_SHIFT;
			if (delta_t_sample > delta_t.delta_t) {
				break;
			}
			if (s >= n) {
				return s;
			}
			for (int i = 0; i < delta_t_sample; i++) {
				clock();
				sample[sample_index] = sample[sample_index + RINGSIZE] = (short) output();
				++sample_index;
				sample_index &= 0x3fff;
			}
			delta_t.delta_t -= delta_t_sample;
			sample_offset = next_sample_offset & FIXP_MASK;

			int fir_offset = sample_offset * fir_RES >> FIXP_SHIFT;
			int fir_start = (fir_offset * fir_N);
			int sample_start = (sample_index - fir_N + RINGSIZE);

			// Convolution with filter impulse response.
			int v = 0;
			for (int j = 0; j < fir_N; j++) {
				v += sample[sample_start + j] * fir[fir_start + j];
			}

			v >>= FIR_SHIFT;

			// Saturated arithmetics to guard against 16 bit sample overflow.
			final int half = 1 << 15;
			if (v >= half) {
				v = half - 1;
			} else if (v < -half) {
				v = -half;
			}

			buf[s++ * interleave] = (short) v;
		}

		for (int i = 0; i < delta_t.delta_t; i++) {
			clock();
			sample[sample_index] = sample[sample_index + RINGSIZE] = (short) output();
			++sample_index;
			sample_index &= 0x3fff;
		}
		sample_offset -= delta_t.delta_t << FIXP_SHIFT;
		delta_t.delta_t = 0;
		return s;
	}
}