Attempt a proof by contradiction. It doesn't quite work.
Chris Pressey
4 years ago
112 | 112 | end |
113 | 113 | end |
114 | 114 | Step_6 = or(b, a) by Tautology with Step_5 |
115 | qed | |
116 | ===> ok | |
117 | ||
118 | ### Proof by Contradiction ### | |
119 | ||
120 | If we assume p and show that it leads to a contradiction, | |
121 | we can then infer ¬p. If we can use proof by contradiction, | |
122 | we can derive Modus Tollens. | |
123 | ||
124 | given | |
125 | Modus_Ponens = impl(P, Q) ; P |- Q | |
126 | ||
127 | Double_Negation = not(not(P)) |- P | |
128 | Contradiction = P ; not(P) |- bottom | |
129 | Explosion = bottom |- P | |
130 | ||
131 | block Reductio_ad_Absurdum | |
132 | Supposition = A{term} |- A | |
133 | Conclusion = bottom |- not(A) | |
134 | end | |
135 | ||
136 | Premise_1 = |- impl(p, q) | |
137 | Premise_2 = |- not(q) | |
138 | show | |
139 | not(p) | |
140 | proof | |
141 | Step_1 = impl(p, q) by Premise_1 | |
142 | Step_2 = not(q) by Premise_2 | |
143 | block Reductio_ad_Absurdum | |
144 | Step_3 = p by Supposition with p | |
145 | Step_4 = q by Modus_Ponens with Step_1, Step_3 | |
146 | Step_5 = bottom by Contradiction with Step_4, Step_2 | |
147 | Step_6 = not(p) by Conclusion with Step_5 | |
148 | end | |
149 | Step_7 = not(p) by Tautology with Step_6 | |
115 | 150 | qed |
116 | 151 | ===> ok |
117 | 152 |