remove extraneous theorems
Proloy Mishra
1 year, 9 months ago
40 | 40 | |
41 | 41 | Unfortunately, with the machinery that we've got so far, even though we |
42 | 42 | only care that the resulting set contains `impl(P, P)`, we show much more than |
43 | that -- we show all the intermediate results in getting there. | |
43 | that -- we show all the intermediate results in getting there. So, we have to work backwards -- removing the inetermediate results using the same axioms used to add them -- for all the theorems except the desired theorem (`impl(P, P)`). | |
44 | 44 | |
45 | 45 | theorem |
46 | th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), | |
47 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), | |
48 | th(impl(P, P), | |
49 | th(impl(P, impl(P, P)), | |
50 | th(impl(impl(P, impl(P, P)), impl(P, P)), e)))))) | |
46 | th(X, e) = th(X, th(impl(P, P), e)) | |
51 | 47 | |
52 | 48 | The proof given in the book is |
53 | 49 | |
70 | 66 | th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), |
71 | 67 | th(impl(impl(P, impl(impl(P, P), R)), impl(impl(P, impl(P, P)), impl(P, R))), e))) |
72 | 68 | [by substitution of impl(P, P) into Q] |
73 | ||
74 | th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), | |
75 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), e))) | |
76 | [by substitution of P into R] | |
77 | 69 | |
78 | 70 | th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), |
79 | 71 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), e))) |
118 | 110 | th(impl(P, impl(P, P)), |
119 | 111 | th(impl(impl(P, impl(P, P)), impl(P, P)), e)))))) |
120 | 112 | [by #MP] |
113 | ||
114 | th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), | |
115 | th(impl(P, P), | |
116 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), | |
117 | th(impl(P, impl(P, P)), | |
118 | th(impl(impl(P, impl(P, P)), impl(P, P)), e)))))) | |
119 | [by #th-comm] | |
120 | ||
121 | th(X, e) = th(X, th(impl(P, P), | |
122 | th(impl(P, impl(impl(P, P), P)), | |
123 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), | |
124 | th(impl(P, impl(P, P)), | |
125 | th(impl(impl(P, impl(P, P)), impl(P, P)), e)))))) | |
126 | [by #th-comm] | |
127 | ||
128 | th(X, e) = th(X, th(impl(P, P), | |
129 | th(impl(P, impl(impl(P, P), P)), | |
130 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), | |
131 | th(impl(impl(P, impl(P, P)), impl(P, P)), | |
132 | th(impl(P, impl(P, P)), e)))))) | |
133 | [by #th-comm] | |
134 | ||
135 | th(X, e) = th(X, th(impl(P, P), | |
136 | th(impl(P, impl(impl(P, P), P)), | |
137 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), | |
138 | th(impl(impl(P, impl(P, P)), impl(P, P)), e))))) | |
139 | [by #A1] | |
140 | ||
141 | th(X, e) = th(X, th(impl(P, P), | |
142 | th(impl(P, impl(impl(P, P), P)), | |
143 | th(impl(impl(P, impl(P, P)), impl(P, P)), | |
144 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), e))))) | |
145 | [by #th-comm] | |
146 | ||
147 | th(X, e) = th(X, th(impl(P, P), | |
148 | th(impl(impl(P, impl(P, P)), impl(P, P)), | |
149 | th(impl(P, impl(impl(P, P), P)), | |
150 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), e))))) | |
151 | [by #th-comm] | |
152 | ||
153 | th(X, e) = th(X, th(impl(P, P), | |
154 | th(impl(P, impl(impl(P, P), P)), | |
155 | th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P))), e)))) | |
156 | [by #MP] | |
157 | ||
158 | th(X, e) = th(X, th(impl(P, P), | |
159 | th(impl(P, impl(impl(P, P), P)), e))) | |
160 | [by #A2] | |
161 | ||
162 | th(X, e) = th(X, th(impl(P, P), e)) [by #A1] | |
121 | 163 | qed |
122 | 164 | |
123 | 165 | [An Algebraic Introduction to Mathematical Logic]: https://archive.org/details/algebraicintrodu00barn_0 |