These are theorems in the Boolean algebra document.
Chris Pressey
1 year, 2 months ago
170 | 170 | Before we state the other De Morgan's law, we state a couple of other |
171 | 171 | useful lemmas involving `not`. |
172 | 172 | |
173 | theorem | |
173 | theorem (#comp-universe) | |
174 | 174 | not(1) = 0 |
175 | 175 | proof |
176 | 176 | 0 = 0 |
180 | 180 | not(1) = 0 |
181 | 181 | qed |
182 | 182 | |
183 | theorem | |
183 | theorem (#comp-empty) | |
184 | 184 | not(0) = 1 |
185 | 185 | proof |
186 | 186 | 1 = 1 |
27 | 27 | |
28 | 28 | Requires [Set Difference](set-difference.eqthy.md) |
29 | 29 | (which itself is based on [Boolean algebra](boolean-algebra.md)). |
30 | ||
31 | // TODO: these should be from boolean algebra | |
32 | axiom (#comp-universe) not(1) = 0 | |
33 | axiom (#comp-empty) not(0) = 1 | |
34 | 30 | |
35 | 31 | axiom (#interior-closed) diff(interior(X), X) = 0 |
36 | 32 | axiom (#interior-idem) interior(interior(X)) = interior(X) |