git @ Cat's Eye Technologies Eqthy / 98f1c08
Checkpoint propositional algebra proof (take different tack on MP.) Chris Pressey 2 years ago
1 changed file(s) with 25 addition(s) and 4 deletion(s). Raw diff Collapse all Expand all
1414 axiom (#th-comm) th(X, Y) = th(Y, X)
1515
1616 The logic system is a Hilbert-style system. There are three statements that are axioms.
17 In the book, they are given "semantically", using set comprehensions.
18
19 > A1 = {p => (q => p) | p, q elem P(X)}
20 > A2 = {(p => (q => r)) => ((p => q) => (p => r)) | p, q, r elem P(X)}
21 > A3 = {~~p => p | p elem P(X)}
22
1723 We model this by saying that any set of theorems T is equal to T with any of these
1824 extra axiomatic statements added to it.
1925
2127 axiom (#A2) th(X, e) = th(X, th(impl(impl(P, impl(Q, R)), impl(impl(P, Q), impl(P, R)), e)))
2228 axiom (#A3) th(X, e) = th(X, th(impl(not(not(P)), P), e))
2329
24 In addition, we have modus ponens.
30 In addition, we have modus ponens ("from p and p => q, deduce q"):
2531
26 axiom (#MP) th(P, th(impl(P, Q), e)) = th(Q, th(P, th(impl(P, Q), e)))
32 axiom (#MP) th(P, th(impl(P, Q), e)) = th(Q, e)
2733
2834 I believe this should work. So, let's pick a simple proof and write it up and see if
2935 the `eqthy` checker can confirm it. Example 4.5 on page 16 of Barnes and Mack:
4955
5056 proof
5157 th(X, e) = th(X, e)
52 th(X, e) = th(X, th(impl(P, impl(Q, P)), e)) [by #A1]
53 th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), e)) [by substitution of impl(P, P) into Q]
58 th(X, e) = th(X, th(impl(P, impl(Q, P)), e)) [by #A1]
59 th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)), e)) [by substitution of impl(P, P) into Q]
60
61 th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)),
62 th(impl(impl(P, impl(Q, R)), impl(impl(P, Q), impl(P, R)), e))))
63 [by #A2]
64
65 th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)),
66 th(impl(impl(P, impl(impl(P, P), R)), impl(impl(P, impl(P, P)), impl(P, R)), e))))
67 [by substitution of impl(P, P) into Q]
68
69 th(X, e) = th(X, th(impl(P, impl(impl(P, P), P)),
70 th(impl(impl(P, impl(impl(P, P), P)), impl(impl(P, impl(P, P)), impl(P, P)), e))))
71 [by substitution of P into R]
72
73 // th(X, e) = th(X, th(impl(impl(P, impl(P, P)), impl(P, P)), e))
74 // [by #MP]
5475 // FIXME TODO
5576 qed
5677