Checkpoint this proof in progress.
Chris Pressey
2 years ago
0 | Right Inverse for All is Left Inverse | |
1 | ===================================== | |
2 | ||
3 | See [Right Inverse for All is Left Inverse](https://proofwiki.org/wiki/Right_Inverse_for_All_is_Left_Inverse) | |
4 | on proofwiki.org. | |
5 | ||
6 | TODO DRAFT | |
7 | ||
8 | First we need the semigroup axioms. | |
9 | ||
10 | axiom (#id-right) mul(A, e) = A | |
11 | axiom (#assoc) mul(A, mul(B, C)) = mul(mul(A, B), C) | |
12 | axiom (#inv-right) mul(A, inv(A)) = e | |
13 | ||
14 | Next we need "Product of Semigroup Element with Right Inverse is Idempotent" | |
15 | as a lemma. | |
16 | ||
17 | theorem (#product-of-semigroup-element-with-right-inverse-is-idempotent) | |
18 | mul(mul(inv(A), A), mul(inv(A), A)) = mul(inv(A), A) | |
19 | proof | |
20 | mul(inv(A), A) = mul(inv(A), A) | |
21 | mul(mul(inv(A), e), A) = mul(inv(A), A) | |
22 | mul(mul(inv(A), mul(A, inv(A))), A) = mul(inv(A), A) | |
23 | mul(mul(mul(inv(A), A), inv(A)), A) = mul(inv(A), A) | |
24 | mul(mul(inv(A), A), mul(inv(A), A)) = mul(inv(A), A) | |
25 | qed | |
26 | ||
27 | Finally we need this proof. | |
28 | ||
29 | theorem (#right-inverse-for-semigroup-is-left-inverse) | |
30 | // TODO FIXME DRAFT IN PROGRESS | |
31 | // mul(A, inv(A)) = mul(inv(A), A) | |
32 | mul(mul(mul(inv(A), A), inv(mul(inv(A), A))), inv(mul(inv(A), A))) = e | |
33 | proof | |
34 | e = e | |
35 | mul(A, inv(A)) = e | |
36 | mul(mul(A, e), inv(A)) = e | |
37 | mul(mul(A, mul(A, inv(A))), inv(A)) = e | |
38 | mul(mul(mul(A, A), inv(A)), inv(A)) = e | |
39 | mul(mul(mul(mul(inv(A), A), mul(inv(A), A)), inv(mul(inv(A), A))), inv(mul(inv(A), A))) = e [by substitution of mul(inv(A), A) into A] | |
40 | mul(mul(mul(inv(A), A), inv(mul(inv(A), A))), inv(mul(inv(A), A))) = e [by #product-of-semigroup-element-with-right-inverse-is-idempotent] | |
41 | qed |